Abstract
A generally applicable method for the direct 3-N-arylation of flavins using arylboronic
acids and copper acetate was developed. The reaction conditions were optimized considering
the lability of flavins in basic conditions and thermal heating. Donor- and acceptor-substituted
arylboronic acids were used yielding 3-N-arylflavins in moderate to good yields by
C(aryl)-N(imide) bond formation. UV and fluorescence measurements indicate an orthogonal
orientation of the additional aromatic substituent to the flavin ring system. The
arene substituent is not electronically coupled to the flavin π-system in the ground
state, but electron-rich arene substituents in 3-N position significantly reduce the
flavin emission intensity.
Key words
flavin - N-arylation - boronic acid - isoalloxazin - microwave - copper catalysis
References
<A NAME="RZ06108SS-1">1 </A>
Mansoorabadi SO.
Thiobodeaux CJ.
Liu H.
J. Org. Chem.
2007,
72:
6329
<A NAME="RZ06108SS-2">2 </A>
Massey V.
Biochem. Soc. Trans.
2000,
28:
283
<A NAME="RZ06108SS-3">3 </A>
Chemistry and Biochemistry of Flavoenzymes
Müller F.
CRC Press;
Boca Raton:
1991.
<A NAME="RZ06108SS-4">4 </A>
Fritz BJ.
Kasai S.
Matsui K.
Photochem. Photobiol.
1987,
45:
113
<A NAME="RZ06108SS-5">5 </A>
Bowd A.
Byrom P.
Hudson JH.
Photochem. Photobiol.
1968,
8:
1
<A NAME="RZ06108SS-6">6 </A>
König B.
Pelka M.
Zieg H.
Ritter T.
Bouas-Laurent H.
Bonneau R.
Desvergne J.-P.
J. Am. Chem. Soc.
1999,
121:
1681
<A NAME="RZ06108SS-7">7 </A>
Hasford JJ.
Rizzo CJ.
J. Am. Chem. Soc.
1998,
120:
2251
<A NAME="RZ06108SS-8">8 </A>
Legrand Y.-M.
Gray M.
Cooke G.
Rotello VM.
J. Am. Chem. Soc.
2003,
125:
15879
<A NAME="RZ06108SS-9">9 </A>
König B.
Pelka M.
Reichenbach-Klinke R.
Schelter J.
Daub J.
Eur. J. Org. Chem.
2001,
2297
<A NAME="RZ06108SS-10A">10a </A>
Jordan BJ.
Cooke G.
Garety JF.
Pollier MA.
Kryvokhyzha N.
Bayir A.
Rabani G.
Rotello VM.
Chem. Commun.
2007,
1248
<A NAME="RZ06108SS-10B">10b </A>
Caroll JB.
Jordan BJ.
Xu H.
Erdogan B.
Lee L.
Cheng L.
Tiernan C.
Cooke G.
Rotello VM.
Org. Lett.
2005,
7:
2551
<A NAME="RZ06108SS-10C">10c </A>
Ray M.
Goodmann AJ.
Carroll JB.
Bardon K.
Markey M.
Cooke G.
Rotello VM.
Org. Lett.
2004,
6:
385
<A NAME="RZ06108SS-10D">10d </A>
Butterfield SM.
Goodman CM.
Rotello VM.
Waters ML.
Angew. Chem. Int. Ed.
2004,
43:
724; Angew. Chem. 2004, 116, 742
<A NAME="RZ06108SS-10E">10e </A>
Cooke G.
Angew. Chem. Int. Ed.
2003,
42:
4860 ; Angew. Chem. 2003 , 115 , 5008
<A NAME="RZ06108SS-10F">10f </A>
Guo F.
Chang BH.
Rizzo CJ.
Bioorg. Med. Chem. Lett.
2002,
12:
151
<A NAME="RZ06108SS-10G">10g </A>
Behrens C.
Ober M.
Carell T.
Eur. J. Org. Chem.
2002,
3281
<A NAME="RZ06108SS-10H">10h </A>
Butenandt J.
Epple R.
Wallenborn E.-U.
Eker APM.
Gramlich V.
Carell T.
Chem. Eur. J.
2000,
6:
62
<A NAME="RZ06108SS-10I">10i </A>
Rotello VM.
Curr. Opin. Chem. Biol.
1999,
3:
747
<A NAME="RZ06108SS-10J">10j </A>
Deans R.
Rotello VM.
J. Org. Chem.
1997,
62:
4528
<A NAME="RZ06108SS-10K">10k </A>
Breinlinger E.
Niemz A.
Rotello VM.
J. Am. Chem. Soc.
1995,
117:
5379
<A NAME="RZ06108SS-11A">11a </A>
Lindén AA.
Johansson M.
Hermanns N.
Bäckvall J.-E.
J. Org. Chem.
2006,
71:
3849
<A NAME="RZ06108SS-11B">11b </A>
Lindén AA.
Hermanns N.
Ott S.
Krüger L.
Bäckvall J.-E.
Chem. Eur. J.
2005,
11:
112
<A NAME="RZ06108SS-11C">11c </A>
Imada Y.
Iida H.
Murahashi S.-I.
Naota T.
Angew. Chem. Int. Ed.
2005,
44:
1704 ; Angew. Chem. 2005 , 117 , 1732
<A NAME="RZ06108SS-11D">11d </A>
Cibulka R.
Vasold R.
König B.
Chem. Eur. J.
2004,
10:
6223
<A NAME="RZ06108SS-11E">11e </A>
Imada Y.
Iida H.
Ono S.
Murahashi S.-I.
J. Am. Chem. Soc.
2003,
125:
2868
<A NAME="RZ06108SS-11F">11f </A>
Moonen MJH.
Fraaije MW.
Rietjens IMCM.
Laane C.
van Berkel WJH.
Adv. Synth. Catal.
2002,
344:
1023
<A NAME="RZ06108SS-11G">11g </A>
Murahashi S.-I.
Ono S.
Imada Y.
Angew. Chem. Int. Ed.
2002,
41:
2366 ; Angew. Chem. 2002 , 114 , 2472
<A NAME="RZ06108SS-11H">11h </A>
Murahashi S.-I.
Oda T.
Masui Y.
J. Am. Chem. Soc.
1989,
111:
5002
<A NAME="RZ06108SS-11I">11i </A>
Shinkai S.
Ishikawa Y.-I.
Manabe O.
Chem. Lett.
1982,
809
<A NAME="RZ06108SS-12">12 </A>
Julliard M.
Chanon M.
Chem. Rev.
1983,
83:
425
<A NAME="RZ06108SS-13">13 </A>
Ritter SC.
König B.
Chem. Commun.
2006,
4694
<A NAME="RZ06108SS-14">14 </A>
Svoboda J.
Schmaderer H.
König B.
Chem. Eur. J.
2008,
14:
1854
<A NAME="RZ06108SS-15">15 </A>
Substituents at 10-N have to be inserted in common synthetic protocols for flavin
synthesis like the well-known Kuhn synthesis. These routes suffer from the drawback
that optimization for different flavins is required.
<A NAME="RZ06108SS-16">16 </A>
Dutra JK.
Cuello AO.
Rotello VM.
Tetrahedron Lett.
1997,
38:
4003
<A NAME="RZ06108SS-17">17 </A>
Clerin D.
Lacroix A.
Fleury J.-P.
Tetrahedron Lett.
1976,
2899
<A NAME="RZ06108SS-18">18 </A>
Fleury J.-P.
Heterocycles
1980,
14:
1581
<A NAME="RZ06108SS-19">19 </A>
Lacroix A.
Schabat D.
Clerin D.
Fleury J.-P.
Bull. Soc. Chim. Fr.
1987,
1065
<A NAME="RZ06108SS-20">20 </A>
Goldner H.
Dietz G.
Carstens E.
Liebigs Ann. Chem.
1966,
694:
142
<A NAME="RZ06108SS-21">21 </A>
Halladay PK.
Hunt NH.
Butcher GA.
Cowden WB.
Biochem. Pharm.
1990,
39:
1063
<A NAME="RZ06108SS-22">22 </A>
Youssef MSK.
Abbady MS.
Heterocycles
1997,
45:
1671
<A NAME="RZ06108SS-23A">23a </A>
Ley SV.
Thomas AW.
Angew. Chem. Int. Ed.
2003,
42:
5400 ; Angew. Chem. 2003 , 115 , 5558
<A NAME="RZ06108SS-23B">23b </A>
Chan DMT.
Monaco KL.
Wand R.-P.
Winters MP.
Tetrahedron Lett.
1998,
39:
2933
<A NAME="RZ06108SS-23C">23c </A>
Hügel HM.
Rix CJ.
Fleck K.
Synlett
2006,
2290
<A NAME="RZ06108SS-23D">23d </A>
Lan J.-B.
Zhang G.-L.
Yu X.-Q.
You J.-S.
Chen L.
Yan M.
Xie R.-G.
Synlett
2004,
1095
<A NAME="RZ06108SS-23E">23e </A>
Lam PYS.
Vincent G.
Clark CG.
Deudon S.
Jadhav PK.
Tetrahedron Lett.
2001,
42:
3415
<A NAME="RZ06108SS-23F">23f </A>
Chernick ET.
Ahrens MJ.
Schneidt KA.
Wasielewski MR.
J. Org. Chem.
2005,
70:
1486
<A NAME="RZ06108SS-23G">23g </A>
Kantam ML.
Prakash BV.
Reddy CV.
J. Mol. Catal. A
2005,
241:
162
<A NAME="RZ06108SS-23H">23h </A>
Dai Q.
Ran C.
Harvey RG.
Tetrahedron
2006,
62:
1764
<A NAME="RZ06108SS-24">24 </A>
Recently, this easily accessible flavin and derivatives were used in our group for
catalytic photooxidations.
<A NAME="RZ06108SS-25">25 </A>
McCormick DB.
J. Heterocycl. Chem.
1970,
7:
447
<A NAME="RZ06108SS-26">26 </A>
Broutin P.-E.
Colobert F.
Eur. J. Org. Chem.
2005,
1113